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ABSTRACT 

The aim of this research is to explore possible usages of high resolution 

satellite imagery for archaeological surveys and to develop a methodology for 

generating site plans with the maximum possible detail using a minimum amount of 

geophysical survey. The case site was Kerkenes Dağ, an Iron Age city in central 

Turkey. The satellite images were combined with the gradiometer data set using 

discriminant function analysis. Directional edge detection filters were also applied to 

the satellite images in order to enhance the cultural features. The major conclusion of 

this study is that although satellite technology has reached a level of resolution that 

makes it likely to be useful in archaeological research, there are still many obstacles 

to be overcome. 
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CHAPTER I 

INTRODUCTION 

Purpose and Scope 

Data fusion techniques have been utilized for a number of years in urban 

planning and monitoring, (Haala andWalter 1999; Netzband et al. 1999; Pesaresi and 

Benediktsson 2000; Segl et al. 2003; Solberg et al. 1991). Such studies require a very 

fine spatial resolution and so does archaeology. Satellite imagery has recently reached 

to a sufficient resolution. New sensors such as the IKONOS and Quickbird 

panchromatic bands have a spatial resolution of 1 and 0.70 meters respectively.   

Geophysical prospecting methods, on the other hand, have been widely 

utilized for archaeological surveys (Aydin et.al 2002; Kvamme 2003; Matney and 

Bauer 2000; Sarris and Jones 2000; Smith and Ratté 1997; Summers 1998; 

Weymouth and Huggins 1985) because of their potential of revealing subtle 

subsurface features. However, although the geophysical survey is a non-intrusive 

method and offers time efficient large area coverage when compared to excavation, it 

still requires intensive human labor and it is much slower to acquire than satellite 

imagery. For example, at the Iron Age site of Kerkenes, it took us four field seasons 

to complete the geomagnetic survey of the whole site. During this time, just for the 

survey, we hired at least 10 workmen depending on the size of the project team, and 

often we worked two shifts in a day. The aim of this research is to explore possible 
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usages of high resolution satellite imagery for archaeological surveys. A recent 

project (Johnson and Hailey 2003) has produced promising results in terms of using 

satellite imagery in combination with geophysical surveys for revealing subsurface 

features. This study will follow that framework, applying it on a larger scale. In 

addition, this study aims to develop a methodology for generating archaeological site 

plans with maximum possible detail using a minimum amount of geophysical survey.  

The case site will be Kerkenes Dağ, an Iron Age city in central Turkey. The 

reason for choosing Kerkenes was because of the availability of an extensive 

gradiometer data set, which covers almost the entire site. This data will be merged 

with the two Quickbird satellite images both multi-spectral and panchromatic bands.   

The gradiometer data set has a spatial resolution of 0.5m2. The high resolution 

satellite imagery offers almost the same spatial resolution as the gradiometer survey. 

Moreover, test trenches revealed that the maximum depth of the cultural remains is no 

more than a meter. The satellite images will be combined and correlated with 

gradiometer data set. This correlation will allow us to evaluate the further possible 

applications of high resolution satellite imagery in archaeology.  

One important aspect of this study should be mentioned here; the aim of this 

study is purely methodological, focusing on the use of satellite imagery in 

combination with geophysical methods in order to reveal more information about the 

site plan. It is not possible to directly answer any archaeological questions such as the 

time period or the identification of the site using this type of methodology. It can only 

be a guide for further archaeological research.   
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What is Data Fusion? 

The concept of data fusion has been discussed by many scientists (Llinas and 

Hall 1998; Pohl and Van Genderen 1998; Wald 1999) who defined the essential 

features of the concept. Pohl and Van Genderen (1998: 825) suggested one definition 

for image fusion: “Image fusion is the combination of two or more different images to 

form a new image by using a certain algorithm.” On the other hand, Mangolini (as 

cited by Wald 1999:1190) proposed a broader definition: “set of methods, tools and 

means using data coming from various sources of different nature in order to increase 

the quality (in broad sense) of the requested information”. Finally, Wald suggests a 

definition that combines three essential features of data fusion: the emphasis on the 

framework, the diversity of the data sources and the increased quality of the 

information that is obtained from those data sets (1991:1191): “data fusion is a formal 

framework in which expressed means and tools for the alliance of data originating 

from different sources. It aims at obtaining information of greater quality; the exact 

definition of ‘greater quality’ will depend upon the application.” Thus, according to 

Wald (1999: 1191), any type of image processing that combines two or more data 

sets, such as image classification or atmospheric correction or application of 

vegetation indices, should be considered data fusion.  

Geographic Information Systems (GIS) aim to integrate any type of 

information on the basis of their geographic location. Thus, the use of two or more 

images within a GIS system can be considered an earlier version of data fusion, 
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because it aims at the integration of different data sets. Data fusion, on the other hand, 

not only integrates the data sets but actually ‘fuses’ them. Therefore, data fusion is the 

combination of two or more data sets, regardless of their origin, in order to produce 

one data set that contains all the relevant information that come from those data sets.  

Data Fusion in Archaeology 

Data fusion applications in archaeology are mainly the integration of different 

data sets with different data formats. In other words, they aim to overlay raster (e.g. 

aerial photos) and vector (e.g. topographic maps) data. Examples of this type of 

application can be found in: Brizzolari et al. 1992; Doneus et. al. 1998; Ladefoged et. 

al. 1995; and Pryor et. al. 1992. Kvamme’s (2001) RGB color composites are the 

closest to applying of data fusion in archaeology. Evidently, in archaeology data 

fusion is still understood as data integration. One recent study (Johnson and Hailey, 

2003) is an exception. In this research, they applied multivariate statistical methods in 

order to classify and fuse multi-sensor images.  

Data Fusion in Remote Sensing 

Initially, data fusion techniques have been used in military applications such 

as surveillance and target acquisition (Hall 1992: 2). Later these techniques were 

applied to non-military areas such as remote sensing, automated monitoring of 

equipment, robotics and medical diagnosis (Hall 1992: 1).  

Data fusion applications in remote sensing aim to integrate different data sets 

in order to extract additional information from those data sets. Those data sets could 
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come from multi-sensors, or they could be multi-temporal or they could have 

different spatial resolution. The objectives of data fusion mainly depend on the 

specific research questions and the availability of the data sets. But Pohl and Van 

Genderen (1998: 827-829) summarize the most common objectives as follows: image 

sharpening, improvement of registration accuracy, creation of stereo data sets, feature 

enhancement, improved classification, temporal aspects for change detection and 

overcoming gaps.  

Remote sensing applications of data fusion are mainly focused on passive 

sensors, which operate within the optical spectrum. The basic example for this type of 

data fusion is resolution merge (pan-sharpening), which is simply the combination of 

multispectral image with the pan-chromatic one in order to improve the resolution of 

the multi-spectral bands. But there are recent examples of fusing passive and active 

sensors data such as fusion of radar and hyperspectral data (Chen et al. 2003) and 

aerial color imagery and laser scanning (Haala and Walter 1999). Also, there a few 

examples of fusion of remote sensing imagery with other type of data sets such as 

topographical data (Janssen 1990) or geophysical data (Harris and Murray 1990) 

There are many different techniques which have been used in data fusion. 

Almost every researcher develops or slightly modifies the techniques according to 

their project’s unique needs. Pohl and Van Genderen (1998: 831-839) have divided 

those techniques into three categories: a) color-related techniques such as color 

composites and IHS transformations, b) statistical/numerical methods that vary from 
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basic arithmetical operations (e.g. multiplication) to wavelets, and c) combined 

approaches which simply integrate the two techniques.  

Geographical and Geological Setting 

The site is in Şahmuratlı village within the borders of Yozgat province, which 

is about 30km away from Yozgat. It is located on top of a circa 1,400m high 

mountain, Kerkenes Dağ from which the site’s name comes (Fig. 1.1) (Summers and 

Summers 1994). The site covers 2.5 km2 and is surrounded by a 7.5 km long city 

wall. It is the largest pre-Hellenistic site in Anatolia so far known (Summers and 

Summers 1994). The geographical setting of the site indicates its importance. It 

dominates the northern end of the Cappadocia Plain, and it overlooks over the two 

main routes that link Europe to Iran and Black Sea to Mediterranean Sea (Summers 

and Summers 1994).  

Geologically, the whole mountain is a made up of the Kerkenes granitoid 

which is located in the north-eastern unit of Yozgat batholith (Fig. 1.2) (Erler et al. in 

press). The Kerkenes granitoid encloses an area of 130km2, and the remains of the 

ancient city lie within that area. NE-SW trending fractures cross the north eastern 

section of the granitoid (Erler et al. in press), and the water resources are controlled 

by these fractures. There is one main stream with small tributaries within the site, 

which trends SSE-NNW. At the northwestern gate, which is also called the Water 

Gate, all the water courses join together and flow out of the city (Erler et al. in press). 
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The city wall follows the water divide from northern end through Water Gate to the 

Kiremitlik; after that point it follows the edge of the steep slope (Erler et al. in press).  

History of Exploration 

The site was first mentioned very briefly by J. G. C. Anderson in an article 

published in Studia Pontica in 1903 (Summers and Summers 1998). In 1927, H. H. 

Von der Osten and F. H. Blackburn surveyed the 7.5 km long city wall and produced 

a map of the city including the gates (Fig. 1.3) (Summers and Summers 1998). 

In 1928, E. F. Schmidt, while working at Alişar Höyük, conducted a brief and 

intensive excavation at Kerkenes. He dug 14 test trenches and looked for a Hittite 

settlement. With apparent disappointment he concluded that the city was post-Hittite 

and pre-classical (Summers and Summers 1998). Dr. G. D. Summers has directed an 

archaeological project since 1993. 

Prezeworski suggests that Kerkenes was Herodotus’ Pteria (Summers et. al. 

1996). However in light of the recent archaeological evidence, Summers and 

Summers (2003: 6) suggest that the city could be the center of an Anatolian polity 

and dated to mid-seventh century BC.  

There are some small later occupations within the site. Schmidt dug two test 

trenches at the southern end of the site, an area known as Kiremitlik and found a 

small settlement. According to his occupation sequence, the settlement begins with 

the Hellenistic period and goes as late as the early Byzantine. On the Keykavus Kale 

(the highest mound on the site) there is an occupation sequence that runs from the 
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Hellenistic to the Byzantine period. Also, there is a small cemetery at the eastern skirt 

of the Kale which was associated with the Byzantine occupation on the Kale 

(Summers and Summers 1995). 
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Figure 1.3: The first plan of the site by H. H. Van der Osten and F. H. Blackburn. 
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CHAPTER II 

PRE-PROCESSING THE DATA SETS 

In this chapter the preliminary processing of the data sets will be discussed. 

This processing was one of the essential parts of this study because it prepared the 

data sets, which were in different formats and projections, for integration. 

Gradiometer Data Set 

Reasons for Selecting Geomagnetic Method at Kerkenes  

The geomagnetic survey was selected as the primary geophysical prospecting 

method because of the site’s natural and archaeological conditions. First, the 

geological structure of the site was convenient for geomagnetic survey. The whole 

mountain is a granitoid, and the main building material of the settlement is also 

granite. Igneous rocks like granite derive their remanent magnetism during their 

initial cooling period when iron particles in their matrix align with the Earth’s 

magnetic field (Scheriff 1991). For this reason, during a geomagnetic survey igneous 

rocks can be easily detected. Moreover, at Kerkenes, the primary building material 

for foundations and walls was granite, which was quarried locally. Thus, it is possible 

to detect the subsurface architectural remains using geomagnetic survey instruments.  

Secondly, the settlement on the site was destroyed by a large fire. Traces of 

intensive burning were visible in the surface remains and in the test trenches. This 
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burning caused the development of thermoremanent magnetism. Thus, the 

architectural remains that underwent intensive burning can be easily detected in the 

geomagnetic survey. 

Thirdly, the depth of the archaeological remains is 80 to 100cm. This feature 

of the site also makes it ideal for magnetometer surveys because at depths greater 

than 1m magnetic signals are inclined to widen and weaken, and the clarity of the 

feature’s shapes is lessened (Clark 1996). 

The Survey 

Although it may seem irrelevant, the gradiometer survey needs to be described 

here because the survey procedure determines the nature of the data set. The 

gradiometer survey was started initially by Dr. Lewis Somers of Geoscan Research in 

1993. Up untill 1998, there had been three survey seasons which aimed to cover only 

a portion of the site (Fig. 2.1).  

In 1998, Dr. Geoffrey Summers has decided to expand the survey in order to 

cover the entire site. I was the field supervisor and was also responsible for data 

management and producing the final maps. The survey was completed in 2002 season 

and it covered almost the entire site. Three areas are excluded: The Kale, the 

Kiremitlik and the City Wall. The Kale, which is the Byzantine castle, and the city 

wall were not surveyed because those areas are covered with mainly rubble and 

bedrock outcrops and the gradiometer would not be able to record features due to the 
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high background noise. The Kiremitlik area was excluded because of the Hellenistic 

settlement on that area and that time period was out of the focus of Kerkenes Project. 

 

 
 

Figure 2.1: Areas surveyed between1993 and 1997. 
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The grid size was 20x20 meters. Each grid was surveyed with a 1 meter 

traverse interval at a sampling rate of 4 readings per meter. The direction of the 

traverses was from south to north, and the starting point was the south-western corner 

of the grid. All of the grids were surveyed in zigzag mode. Several experiments with 

various traverse and sample interval rates and survey mode have proved that those 

were the most time efficient parameters providing the maximum possible detail.  

All of the magnetic surveys at Kerkenes were done using a Geoscan FM36 

gradiometer. The downloading and preliminary processing of the gradiometer data set 

was done in Geoplot, a software which is designed by Geoscan.  

The Gradiometer Data Set 

The processing of the gradiometer data set was done in three stages: 1) Pro-

processing and combining of the data set in Geoplot, 2) the gridding in Surfer and 3) 

it imported to Erdas Imagine. The first objective was to create one single file from the 

data set because it was made of approximately 6000 grid files. Unfortunately, Geoplot 

does not support any type of geo-referencing and it is not designed to handle such a 

large data set. This problem was solved by dividing the data set into areas to facilitate 

the final combination and geo-referencing. These areas were initially created for 

ground-truthing and archiving purposes (Fig 2.2) in the site grid. Thus, a composite 

file was created for each area. Then these composite files were processed in order to 

smoothen and sharpen the image. The processing consists of five steps:  
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Figure 2.2: The area system that was used for combining the grid files. 
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1. Zero Mean Traverse: This function sets the background mean of every 

traverse is to zero and calculates the pixel values within the traverse 

accordingly. It is the first process used to eliminate the zigzag effect in the 

grid that results from alternating traverse directions. 

2. Interpolation: The original pixel dimensions of the grids were 1 x 0.25 meters 

(1 meter traverse interval and 4 readings per meter). These dimensions were 

set to 0.5x 0.5 meters using the interpolation algorithm of Geoplot in order to 

smooth the composite files.  

3. Clip: The preferred clipping range for the data set was two standard 

deviations. That range keeps 95.44 % of the data set and removes the noises. 

In a smaller data set it would have been possible to set up one data range for 

the entire data set. But, because of the immensity of the site, one fixed data 

range was not enough. Geologically, there are quiet areas such as the valleys 

(Fig. 2.3) and noisy areas such as the northern hills (Fig. 2.4). At the end, four 

different data ranges were established: ±10nT, ±20nT, ±30nT and ±45nT. The 

first two data ranges correspond to the areas that are both geographically and 

archaeologically quiet. In other words, there are areas down in the valleys and 

there are no visible remains on the ground. The last two ranges correspond to 

areas both archaeologically and geologically noisy: the northern hilltops with 

a strong geological background and bedrock outcrops and lots of visible 

archaeological remains on the ground.  
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4. Combining composites: A total of 56 300x200m resultant composite files 

were produced. Those composite files were combined after the 3 processing 

steps in Geoplot. At first, it was hoped that Geoplot’s Combine Composite 

function would be able to combine all the composite files into one big 

composite file and export it as a Surfer grid file. Unfortunately, Geoplot is not 

able handle such a large composite file. Therefore, the composite files were 

combined according to their area’s number that indicates the spatial location 

on the Y axis. As a result, the number of composite files was reduced to 12.  

5. Rotation: The last processing step was the rotation of the composite 270 

degrees clockwise before exporting it to Surfer. This was necessary because 

Geoplot is an image processing software that is designed specifically for the 

Geoscan equipment and its coordinate system is pixel based not map based. 

Therefore, the reference corner for grid or composite files is the top-left 

corner. As mentioned above, the starting point of the grids were the south-

western corner. As a result, in Geoplot, for every grid or composite file north 

is to the right of the screen. However, in Surfer north is toward the top, so the 

rotation of the composite files is necessary. Fortunately, Geoplot 3.0 has the 

facility of exporting the composite/grid files with a reference corner offset so 

that the new version eliminated one extra step of offsetting the grid file in 

Surfer. 
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Figure 2.3: An example of a quiet area. 
 

 
 

Figure 2.4: An example of noisy area. 
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The void (dummy) data value was set to Surfer’s (1.70141E+038) instead of 

Geoplot’s (2047.5) so that, during the gridding process the natural neighbor algorithm 

will not fill the blank areas. The 12 files were merged into one XYZ file using the 

merge files function in Surfer spreadsheet. Then, the combined XYZ text file was re-

gridded in Surfer using natural neighbor gridding method. This method was the 

preferred over nearest neighbor, because it is based on Thiessen polygons with each 

of the data points as a centroid. If a new data point is added to the data set it changes 

the shape of the polygons and shrinks the size of some of them. The new Thiessen 

polygon that was taken from an existing Thiessen polygon is called the ‘borrowed 

area’. It uses a weighted average of the neighboring observations (Surfer7 User’s 

Guide 1999:137-138). The gridding process took almost 36 hours, but finally the 

gradiometer data set was one single grid file (Fig. 2.3). Erdas Imagine has a bug when 

importing surfer grid files. It always imports the grid file upside down. This problem 

was solved with a Surfer script file (grid2asc.bas). The script converts the Surfer grid 

file without re-interpolating to an ASCII raster file. Then that file is converted to an 

ArcGIS grid file and imported to Erdas Imagine. Another problem was the dummy 

data value of Surfer (1.70141E+038). At first, the file displayed as an all black image. 

Therefore, the dummy value was excluded from the image statistics.   
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Figure 2.5: The final gradiometer image. 
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The Quickbird Data Set 

On 18th October 2001 the Quickbird 2 was launched successfully by Earth 

Watch Inc. Later, Earth Watch Inc. changed its name to Digital Globe. Digital Globe 

offers two types of satellite imagery: multi-spectral (including infrared) and 

panchromatic. The Quickbird data set was obtained as two images in GeoTIFF 

format: multi-spectral and panchromatic. The multi-spectral image has four bands: 

blue (450 to 520 nm) green (520 to 600 nm), red (630 to 690 nm) and infrared (760 to 

900nm). It has a spatial resolution of 2.8 meters. The panchromatic image has only 

one band: black and white (450-900 nm) but has a spatial resolution of 0.70 meters. 

Both images’ radiometric resolution was 16 bits, and they were geo-referenced in 

UTM WGS 84 projection.  

The statistical analysis required that all the data layers have the same row and 

column numbers and pixel resolution. Since the gradiometer layer was designated as 

the ground-truthing layer, both Quickbird images had to be correlated with the 

gradiometer image in terms of pixel and spatial resolution.  

The first objective was to subset the image because the Quickbird images 

cover a larger area than the site itself (Figs. 2. 6a & 6b), and the area outside the city 

wall was out of the scope of this research. Therefore, a temporary region which 

includes the city wall and the site was subset from the original scene (Figs. 2. 7a & 

7b).  
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The second objective was to re-project the images. There were two options: 

either to re-project the gradiometer image to UTM, or the Quickbird images to the 

site grid. The second option was preferable because the site grid is oriented at an 

angle of 4 degrees from the UTM projection’s north. Therefore, if the gradiometer 

image had been re-projected to UTM, all its pixels would be skewed. Thus, the 

Quickbird images were to be re-project to local coordinate system. However, several 

complications occurred during the process.  

First of all, during the GPS survey of the site, 31 ground control points 

(GCPs) were established and 27 of them were located within the city wall. The GCP’s 

coordinates were available both in UTM projection and local grid system. The only 

disadvantage of those GCPs was that they are not visible on the satellite images 

because they are small survey pins drilled into the bedrock outcrops. At first, it was 

assumed that Quickbird images were rectified to UTM projection very precisely, but, 

in fact, the image fact sheet states that there the maximum RMSE (root mean square 

error) is as much as 14 meters. The first trials of geometrics correction of the 

Quickbird images were totally unsuccessful. It was then recognized that in 

Quickbird’s UTM projection, the spatial locations of those 27 control points do not 

overlap with the GPS survey’s UTM. During the set up of the site grid, 65 points 

were placed on the site and marked with a cross of lime. Moreover, those points were 

recorded and added to base map of the site. An AutoCAD drawing of the base map 

was exported to Erdas Imagine and used as the reference layer. There was one ground 

control point which happened to be both a survey pin and a cross at the same time.  
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Figure 6a: The full scene of Quickbird Multi-spectral band. 
 

 
 

Figure 6b: The full scene of Quickbird panchromatic band. 
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Figure 7a: The subset of the multi-spectral band. 
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Figure 7b: The subset of panchromatic band. 
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When this point’s UTM coordinates were checked on the panchromatic band, it was 

off by 1.0359m. on the X axis and by -4.816m. on the Y axis. Hence, the 27 survey 

pins cannot be used as GCPs at all because they were not visible on the images and 

their coordinates on the Quickbird images were unknown. Moreover, an estimation of 

constant error cannot be done because there was only one point to depend on. 

Another option was to use the crosses that are visible on the panchromatic 

image as GCPs. Unfortunately, only 26 of the crosses were visible on the Quickbird 

panchromatic image. Therefore the city wall was also used as a reference and as a 

result, a total of 64 GCPs was extracted. Two types of algorithms were tried: 

polynomial transformation and rubber sheeting. The total RMS error of the first and 

second order polynomial transformations could not be reduced to less than 4 pixels. 

The third order, on the other hand, produced a very distorted image. Therefore, the 

rubber sheeting method was applied. This method is generally not advised for image 

geometric corrections, and it should be used very carefully. Erdas Imagine offers two 

type of rubber sheeting: Linear and Non-Linear. In both types, the algorithm begins 

by creating a network of triangles connecting the GCPs (Fig. 2.8).  

 

 

Figure 2.8: The triangle network (Erdas Field 
Guide 2002: 341). 
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Erdas Imagine uses Delaunay triangulation method (Erdas Field Guide 2002: 340). 

This triangulation method forms the maximum number of equiangular triangles from 

three points, with the proviso that none of the triangles contain any other points. In 

the linear model, the new locations of the points inside the triangle are calculated with 

first-order polynomial transformation. In the non-linear model, the points inside the 

triangle are calculated with fifth-order polynomial transformation (Erdas Field Guide 

2002: 341-2). The linear method is preferred because the third order polynomial 

transformation has already produced a much distorted image. Although the resulting 

RMS error was 2.25 pixels, when the AutoCAD base map is overlaid on the re-

projected panchromatic image, all the control points and other visual benchmarks 

such as the artificial reservoirs, streams, the castle and the city wall coincided with an 

almost perfect accuracy (Fig. 2.9).  

The final step in processing was to mask the Quickbird images with the 

gradiometer image. The purpose of this is to produce an image that matches the 

gradiometer image exactly. In other words, all of the images should have the same 

pixel size and the same number of rows and columns. As the first step, a binary image 

was created from the gradiometer image. This binary image is composed of 1 for each 

of the data pixels and 0 for the off-site pixels (Fig. 2.10). Then, the Quickbird images 

were masked using the binary image and finally all the data sets have an identical 

data matrix and are ready for the analysis (Figs. 2.11 & 2.12).  
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Figure 2.9: Rectified panchromatic band overlaid with the site’s base map. 
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Figure 2.10: The binary image created for masking. 
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Figure 2.11: The masked multi-spectral image. 
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Figure 2.12: The masked panchromatic image. 
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CHAPTER III 

THE ANALYSIS 

Image Classification 

Image classification techniques are mainly quantitative interpretation of the 

images based on the pixel values. A visual classification, on the other hand, is 

qualitative interpretation. Moreover, it is not repeatable even for the same user. As 

Schwongert (1983:35) notes: “The intent is to replace the sometimes vague or 

ambiguous interpretation of the analyst by more quantitative and repeatable 

processes.” Image classification techniques constitute of two types: unsupervised and 

supervised classification. Commercial image processing softwares, such as Erdas 

Imagine, ENVI and IDRISI, have modules for both unsupervised and supervised 

classification. Unsupervised classification based on clustering techniques such as k-

means cluster or Iterative Self-Organizing Data Analysis Technique (ISODATA), 

which employ statistical methods to create classes based on the natural groups in the 

data (Schowengert 1983).   

Supervised classification techniques, as the name implies, are controlled by 

the analyst. The analyst defines the classes/training sets, and the classification process 

is based upon those classes. The parametric supervised classification methods such as 

maximum likelihood or Mahalonobis distance, are based on Bayesian probability 

theory.  
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CHAPTER IV 

DISCUSSIONS AND CONCLUSIONS 

The major conclusion of this study is that although satellite technology has 

reached a level of resolution that makes it likely to be useful in archaeological 

research, there are still many obstacles to be overcome. Like the other remote sensing 

techniques (e.g, the geophysical techniques), satellite imagery can be employed in 

order to reveal the archaeological landscape. As mentioned in the first chapter, 

satellite imagery has been successfully utilized for urban landscape studies. This 

study is an attempt to understand and evaluate the possible applications of satellite 

imagery for archaeological landscapes.  

The interpretation of the remotely sensed images, ground truthing, is one of 

the most difficult problems of remote sensing applications in archaeology. This study 

also aimed to replace qualitative interpretation based on the analyst’s decisions, with 

a quantitative one, because like in other applications of the remote sensing 

techniques, we (archaeologists) need a more objective method for the interpretation of 

the remotely sensed images.  

During both the pre-processing and analysis stages of this study several 

problems were encountered, such as the re-projection problem in the pre-processing 

stage or the ‘zero’ problem at the analysis stage. Some of those problems were 

solved; some of them were not.  
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The problems and their possible solutions: 

1. The re-projection problem: This study required a very precise re-projection for the 

integration of the data sets and that was very nearly achieved, thanks to crosses 

marked on the ground and evident in the imagery. However, the re-projection 

process could have been easier if the Quickbird images were not re-projected at 

all, because the image was first warped to the UTM projection by the image 

vendor then to the site grid by the user. As a result, the amount of the distortion 

that is caused by re-projection processes was doubled.  

2. The ‘zero’ problem: The unclassified class was one of the most complex problems 

that was encountered during this study. Its solution was only temporary. Image 

segmentation could be a better solution to that problem. Image segmentation 

method aims to divide the image into homogeneous areas, where all the pixels 

belong to only one class (Lobo 1997). The same method could have been applied 

to this study by segmenting the image into a granite class, which was the main 

construction material, and a non-granite class. In order to achieve that, the image 

could have classified as granite and non-granite. Then the pure granite pixels 

could have re-classified into different classes. That could have facilitated the DFA 

analysis, and avoided adding the unclassified class in the analysis. 

3. The limitation of data sets: Unfortunately, the only data set that was available for 

the analysis was the Quickbird images. This limited the analysis in many ways. 

The principal component analysis revealed the fact that the Quickbird data set is 
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highly correlated. Johnson and Haley’s (2003) study was much more successful 

because of the availability of different data sets, that enabled the DFA to produce 

better results.  

One of the major problems in this study was the poor classification. The best 

correct classification rate, which was 70.1, was achieved with 2-class training sets. 

Moreover, it was impossible to visualize any patterning for the structure walls in 

general. Thus, the DFA cannot really distinguish the structure walls class from the 

terrace wall class or from the bedrock class. Because DFA is a spectral classifier, it 

based on pixel value. In this case, there was not much spectral difference between the 

all three classes because they were all made of the same material: granite. Thus their 

spectral signatures were quite similar.  

In conclusion, the application of the remote sensing techniques is a growing 

trend in archaeology. However, we still lag behind the mainstream in remote sensing. 

Archaeological data are generally very complex because of the multi-dimensional 

nature of archaeological record. Moreover, one of the biggest problems of 

archaeological data is integration. Therefore it is our job to explore, apply and 

evaluate these new techniques and technologies, because they can facilitate the 

immense task of drawing conclusions from that multi-dimensional archaeological 

data.  
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The methodology used in this study however, is a bit different than the usual 

image supervised classification for two reasons. First, the training sets were derived 

from another data set namely the gradiometer image. Second, instead of using a pre-

packaged supervised classification such as Erdas Imagine’s maximum likelihood 

module, a statistical software package, SPSS 11.0, was utilized in order to run a 

Discriminant Function Analysis (DFA). The DFA was applied to the training sets 

both individually and collectively. The results were used in building a model in Erdas 

Imagine in order to apply the DFA to the whole data set.   

Discriminant Function Analysis (DFA) 

The DFA is a statistical technique based on the assumption of a multivariate 

normal distribution. The multivariate normal distribution is the k-dimensional version 

of the normal distribution, where the location of the distribution is controlled by a 

mean vector instead of one mean, and the spread of the distribution is controlled by a 

covariance matrix instead of standard deviation (James 1985:15-16).  

The two-group DFA reduces the data set into a single linear (axis) 

composition of variables, which maximizes the between group differences and 

minimizes the within group differences (Green 1978:143). The resultant linear 

function creates an axis along which each of the original classes may be projected 

with probability-based boundary between the two groups. Each case is assigned to 

one group or the other depending on where its location falls relative to that boundary 

(Green 1978:143).  
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The multi-group DFA is more complex. In the multi-group case, there are not 

only multiple cases to classify but also multiple discriminant functions. Thus, instead 

of a single linear composition, the multi-group DFA has multiple linear compositions. 

The first axis maximizes the differences among the groups and minimizes the within 

group difference; the second axis operates on the remaining variables by applying the 

same procedure (Green 1978:297-298).  

The Application of DFA to the Data Sets 

As mentioned in the previous chapter, the gradiometer file was selected to be 

the ground-truth data set. Test trenches have confirmed that the gradiometer image is 

quite accurate on revealing the structures’ spatial location and shape. Therefore, all 

the training sets were created by using the gradiometer image. Prior to defining the 

training sets, all the streams and artificial reservoirs were subtracted from the image. 

Previous tests indicated that water, which has a very distinct spectral signature, was 

placed in the same group as the walls at the site. Area of Interests (AOIs) created 

from two arbitrarily chosen areas. The first area (Figs. 3.1a & 1b) was noisy and the 

walls can be seen on the surface. 

The second area was very quiet and nothing was visible on the surface. These 

two areas are digitized with Erdas Imagine’s AOI tool. In this preliminary stage, only 

two classes were defined: wall and not-wall. These AOIs were converted to an 

annotation layer, which is in vector file format. The reason for that is the annotation 
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layer can be rasterized but AOIs cannot. The two annotation layers were rasterized in 

Imagine as binary images (wall=1 and not-wall=0). Those rasterized training sets  

 

      
 

  

 
were converted to ASCII text files. They were made up from three columns: the X 

and Y coordinates of the pixel and the class value of the pixel. Meanwhile, same 

areas from the Quickbird images were subset and converted into ASCII text files 

using the same format (X, Y, Band1, Band2, Band 3, Band 4 and Pan). Those text 

files of the two areas were merged into one file with their respective training set. 

Consequently, each area has one spreadsheet file which is formed of the seven 

columns: X, Y, Band1, Band2, Band3, Band4, Pan and Class.  

Using SPSS, the discriminant function analysis was applied to the two 

spreadsheet files both to obtain discriminate function coefficients and to determine 

how accurately the training sets was re-classified. Initially, the statistical results 

looked promising. The first training set (Fig. 3.2) was 70.1 % correctly re-classified.  

Figure 3.1b: The digitized walls.  Figure 3.1a: The gradiometer 
image of the first training set. 
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Classification Resultsb,c

63447 26084 89531
2162 2825 4987
70.9 29.1 100.0
43.4 56.6 100.0

63446 26085 89531
2167 2820 4987
70.9 29.1 100.0
43.5 56.5 100.0

WALL
0
1
0
1
0
1
0
1

Count

%

Count

%

Original

Cross-validateda

0 1

Predicted Group
Membership

Total

Cross validation is done only for those cases in the analysis. In
cross validation, each case is classified by the functions derived
from all cases other than that case.

a. 

70.1% of original grouped cases correctly classified.b. 

70.1% of cross-validated grouped cases correctly classified.c. 
 

 
The second set, however, was classified less accurately than the first one (Fig. 

3.3). In fact, the statistical results of the classification revealed two problems: First, 

although the first area’s classification percentage was high enough to be promising, 

the classification algorithm re-classified the not-wall pixels (70.9 %) more accurately 

than the wall pixels (56.5 %). The same problem was also observed in the second 

training set. The moderate results of the second subset were higher than 50 % only 

because of the higher percentage of the correctly re-classified not-wall pixels. The 

second problem was more complex than the first one. The second training set, which 

was the quiet area with no visible remains on the surface, was less accurately re-

classified than the first one. This suggested that ground coverage was playing an 

important role in the image value, also suggested that the discriminant function 

analysis cannot classify the subsurface remains very well.  

Figure 3.2: The 
classification results of the 

first training set with 2-
classes. 
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Classification Resultsb,c

7094 5035 12129
1169 1443 2612
58.5 41.5 100.0
44.8 55.2 100.0
7090 5039 12129
1174 1438 2612
58.5 41.5 100.0
44.9 55.1 100.0

WALL
0
1
0
1
0
1
0
1

Count

%

Count

%

Original

Cross-validateda

0 1

Predicted Group
Membership

Total

Cross validation is done only for those cases in the analysis. In
cross validation, each case is classified by the functions derived
from all cases other than that case.

a. 

57.9% of original grouped cases correctly classified.b. 

57.9% of cross-validated grouped cases correctly classified.c. 
 

 
For a better understanding of the results, the predicted values for the two 

training sets were exported to Surfer 8 and re-interpolated (Figs. 3.4a & 3.4b). The 

resulting grid files revealed the spatial and visual accuracy of the classification. In the 

first training set (Fig. 3.4a), the big terrace wall was re-classified almost correctly. 

 

         
 

 
 
But another problem is revealed here, one that cannot be observed in the statistical 

results. The visible walls were, as in the first subset, more likely to be re-classified 

Figure 3.4b: The spatial results of 
the second training set with 2-

classes. 

Figure 3.4a: The spatial results of the 
first training set with 2-classes. 

Figure 3.3: The classification 
results of the second training set 

with 2-classes. 
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correctly than the buried ones. The big terrace walls, which can generally be seen on 

the ground, were re-classified correctly. The structure walls within the terrace walls 

cannot be distinguished at all. 

Two strategies were developed to solve these problems. First, instead of 

arbitrarily choosing two areas, several areas with different ground coverage were 

digitized as training sets. As mentioned previous chapter, the gradiometer image is 

not a consistent data set. Some areas are quieter than the others in terms of 

magnetism. Thus, while choosing training areas with different ground coverage, the 

gradiometer data set was used as reference point. An area with low range magnetic 

return (±10nT), another area with medium range (±30nT) and a third area with high 

range (±45nT) were digitized.  

The second strategy was to increase the number of the classes. In other words, 

during the digitization of the training sets, the wall class was divided into two classes, 

terrace wall and structure wall. The terrace wall class consists of walls which are 

encircling a structure isle; they are generally more than 50 meters long and 

approximately 5 meters wide. Those walls are always either partially or completely 

visible on the surface. The structure wall class is the walls of the single standing 

structures which are neither as long nor as wide as the terrace walls. Their lengths do 

not exceed 40 meters, and they are 2 meters wide at a maximum. However, their 

visibility on the surface depends on their topological location. As a result of erosion, 

if they are up on the slopes, they are more likely to be visible on the ground. But if 

they are down in the valleys, they will be buried under the colluvial sediment (Dr. 
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Geoffrey Summers personal comm.). The third class was labeled bedrock. But in fact, 

it is a combination of rubble piles and natural bedrock outcrops. It is not very easy to 

differentiate those two visually.  

The three resulting training sets and the respective subsets of Quickbird 

images for the training sets were exported to SPSS, and three spreadsheet files for 

each set were created. As a first step, the discriminant function analysis was applied 

to those files individually.  

During the exportation of the training sets as ASCII text files to SPSS, two 

problems are revealed. Naturally it was impossible to classify every individual pixel 

in the training set. Thus, for those pixels a blank/unclassified class is created 

automatically during the exportation. So the class column for the SPSS file had four 

classes instead of three. Another problem was the actual blank pixels with a pixel 

value of zero in the Quickbird images. That problem was easy to overcome. The 

blank areas, the zero pixel value for Quickbird bands, were classified as missing 

value in SPSS and were not included in the classification procedure. The first 

problem however was a far more complex one. Several strategies have been tried to 

solve this problem.  

At first, all the cases which have a blank/unclassified class (class zero) were 

deleted from the spreadsheet file. The statistical results were generally poor (Fig. 3.5). 

The first area, which has visible walls with the highest range, was only 54 % correctly 

classified. In addition to that the same problem was also observed here: the visible 
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terrace walls were more accurately classified than the single structure walls. The 

“bedrock” class has a very high percentage of correct classification. 

The spatial results (Figs. 3.6a & 3.6b), on the other hand, were a bit more 

encouraging than the statistical ones. You can easily see the big terrace wall. 

Moreover, it was also re-classified as terrace wall. A secondary encouraging result 

was that the bedrock class was spatially re-classified correctly in two locations: the 

central area within the big terrace wall and at the southwestern corner of the grid. The 

structure wall class, on the other hand, did not create a pattern that is visually 

recognizable. Some of the single standing structures within the big terrace wall can be 

discerned vaguely, but they are in the terrace wall class. Here again the unclassified/ 

blank areas caused another problem. During the interpolation of the results those 

unclassified areas are also given a value because of the natural neighbor algorithm. 

Moreover, the structure wall class which has the value of two was apparently used as 

intermediate value between one and that is why the whole grid has a grey 

background. 

 
Classification Resultsb,c

4131 2236 985 7352
1620 1942 1351 4913

308 672 2342 3322
56.2 30.4 13.4 100.0
33.0 39.5 27.5 100.0

9.3 20.2 70.5 100.0
4128 2239 985 7352
1625 1937 1351 4913

310 674 2338 3322
56.1 30.5 13.4 100.0
33.1 39.4 27.5 100.0

9.3 20.3 70.4 100.0

CLASS
1
2
3
1
2
3
1
2
3
1
2
3

Count

%

Count

%

Original

Cross-validated a

1 2 3
Predicted Group Membership

Total

Cross validation is done only for those cases in the analysis. In cross validation,
each case is classified by the functions derived from all cases other than that
case.

a. 

54.0% of original grouped cases correctly classified.b. 

53.9% of cross-validated grouped cases correctly classified.c. 
 

Figure 3.5: The classification 
results of the first training set 

with 3-classes. 
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The statistical results of the second subset with the medium range were more 

disappointing than the first (Fig. 3 7). It was only 48.2% correctly re-classified. The 

terrace wall class which had a higher correct classification rate in the first training set 

was re-classified only 26.1% correctly. Evidently, the terrace wall class in this 

training set closely resembles the structure wall class. In order to determine the 

difference between the two groups, a one-way ANOVA table was created in SPSS 

(Fig. 3.8). As is shown in the table, the sigma is very close to one in the all three 

bands except band 4. In other words, in all three bands these two classes are not 

statistically different.   

The spatial results (Figs. 3.9a & 3.9b) were even more discouraging than the 

statistical ones. Visually, nothing was identifiable. There was no patterning at all. 

Even the bedrock class, which has the highest re-classification percentage, did not 

Figure 3.6b: The spatial results of 
the first training set with 3-classes.

Figure 3.6a: The first training set 
with 3-classes. 
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create a pattern. Here again the re-interpolation of the results led to the same zero 

problem with a grey background. 

 
Classification Resultsb,c

1532 2388 1871 5791
1903 3777 2540 8220
729 832 4252 5813
26.5 41.2 32.3 100.0
23.2 45.9 30.9 100.0
12.5 14.3 73.1 100.0
1513 2396 1882 5791
1906 3774 2540 8220
729 832 4252 5813
26.1 41.4 32.5 100.0
23.2 45.9 30.9 100.0
12.5 14.3 73.1 100.0

CLASS
1
2
3
1
2
3
1
2
3
1
2
3

Count

%

Count

%

Original

Cross-validated a

1 2 3
Predicted Group Membership

Total

Cross validation is done only for those cases in the analysis. In cross validation,
each case is classified by the functions derived from all cases other than that
case.

a. 

48.2% of original grouped cases correctly classified.b. 

48.1% of cross-validated grouped cases correctly classified.c. 
 

 
Figure 3.7: The classification results of second training set with 3-classes. 

 

 

 

ANOVA

11.161 1 11.161 .069 .793
2274786 14009 162.380
2274797 14010

1913.080 1 1913.080 2.283 .131
1.2E+07 14009 837.850
1.2E+07 14010

1134.409 1 1134.409 .909 .340
1.7E+07 14009 1248.377
1.7E+07 14010

69294.02 1 69294.022 28.797 .000
3.4E+07 14009 2406.277
3.4E+07 14010

5601.529 1 5601.529 3.653 .056
2.1E+07 14009 1533.369
2.1E+07 14010

Between Groups
Within Groups
Total
Between Groups
Within Groups
Total
Between Groups
Within Groups
Total
Between Groups
Within Groups
Total
Between Groups
Within Groups
Total

B1

B2

B3

B4

PAN

Sum of
Squares df Mean Square F Sig.

 
 

Figure 3.8: The ANOVA table of the second training set with 3-classes. 
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The last training set with a low range was the least successful training set. The 

correct re-classification percentage was only 41.5 (Fig. 3.10). Again the best re-

classified classes were the terrace wall with a 45.2% and the bedrock with 47.1%. 

The spatial results (Figs. 3.11a & 3.11b), like in the second subset, did not show any 

patterning at all. The zero class again continued to be a problem, and in this training 

set the structure wall class became the background of the image.  

As mentioned above, many different strategies were used in trying to solve the 

‘zero’ problem. At first, the simple solution was to delete and exclude all the zero 

classed cases from the spreadsheet file, but this strategy caused more problems than it 

was worth because the gridding algorithms assigned a value to those 

blank/unclassified areas automatically. In other words the gridding algorithms  

Figure 3.9b: The spatial results of the 
second training set with 3-classes. 

Figure 3.9a: The second training set 
with 3-classes. 
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Classification Resultsb,c

1355 795 841 2991
1066 1110 890 3066
195 212 373 780

45.3 26.6 28.1 100.0
34.8 36.2 29.0 100.0
25.0 27.2 47.8 100.0
1352 796 843 2991
1068 1108 890 3066
199 214 367 780

45.2 26.6 28.2 100.0
34.8 36.1 29.0 100.0
25.5 27.4 47.1 100.0

CLASS
1
2
3
1
2
3
1
2
3
1
2
3

Count

%

Count

%

Original

Cross-validated a

1 2 3
Predicted Group Membership

Total

Cross validation is done only for those cases in the analysis. In cross validation,
each case is classified by the functions derived from all cases other than that
case.

a. 

41.5% of original grouped cases correctly classified.b. 

41.3% of cross-validated grouped cases correctly classified.c. 
 

 
Figure 3.10: The classification results of the third training set with 3-classes. 

 

 

 

        
 

  
 

Figure 3.11b: The spatial results of the 
third training set with 3-classes. 

Figure 3.11a: The third training set 
with 3-classes. 
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assigned these blank/unclassified pixels to one or another of the classes. This problem 

was observed in the spatial results of all three training sets.  

As a result of the low correct classification percentage, the whole 

blank/unclassified class was added back as a fourth class to the analysis. The correct 

classification percentage of the first training set drop down to 29.7 (Fig. 3.12). 

 
Classification Resultsb,c

4298 1264 827 963 7352
1579 1096 1276 962 4913
422 278 2195 427 3322

10397 8411 10532 8184 37524
58.5 17.2 11.2 13.1 100.0
32.1 22.3 26.0 19.6 100.0
12.7 8.4 66.1 12.9 100.0
27.7 22.4 28.1 21.8 100.0
4297 1264 827 964 7352
1581 1094 1276 962 4913
422 278 2194 428 3322

10397 8412 10532 8183 37524
58.4 17.2 11.2 13.1 100.0
32.2 22.3 26.0 19.6 100.0
12.7 8.4 66.0 12.9 100.0
27.7 22.4 28.1 21.8 100.0

CLASS
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4

Count

%

Count

%

Original

Cross-validated a

1 2 3 4
Predicted Group Membership

Total

Cross validation is done only for those cases in the analysis. In cross validation, each case is
classified by the functions derived from all cases other than that case.

a. 

29.7% of original grouped cases correctly classified.b. 

29.7% of cross-validated grouped cases correctly classified.c. 
 

 
Figure 3.12: The classification results of the first training set with 4 classes. 

 
As expected, the predicted group membership of the fourth class showed an even 

distribution among the other classes. Because this class, although it is unclassified, is 

a mixture of the all three classes, its range compromises all the other classes. One 

interesting aspect of the statistical results should be mentioned here; in the analysis 

with three classes, the correct classification percentage of the terrace wall class was 

56.1. In the fourth class version, this percentage increased to 58.4. The spatial results 
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(Figs. 3.13a & 3.13b) had at least some patterning, and the big terrace wall was 

almost correctly re-classified. The interpolation problem is also solved since for each 

X and Y coordinate there was a pixel value.  

 

    
 

        
The correct classification percentage for the second training set yet again 

dropped down to 29.3 (Fig. 3. 14). The terrace wall class was only 12.7 % correctly 

classified. This was problematic in the three class version as well. The fourth class 

again shows an even distribution among the all classes except the terrace wall class. 

The spatial results (Figs. 3.15a & 16b) show no patterning at all.  

Figure 3.13b: The spatial results of the 
first training set with 4-classes. 

 

Figure 3.13a: The first training 
set with 4-classes. 
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Classification Resultsb,c

744 2026 1777 1244 5791
986 3189 2279 1766 8220
115 755 3982 961 5813

6676 24301 27587 21334 79898
12.8 35.0 30.7 21.5 100.0
12.0 38.8 27.7 21.5 100.0
2.0 13.0 68.5 16.5 100.0
8.4 30.4 34.5 26.7 100.0
734 2036 1777 1244 5791
991 3183 2279 1767 8220
115 756 3981 961 5813

6676 24303 27588 21331 79898
12.7 35.2 30.7 21.5 100.0
12.1 38.7 27.7 21.5 100.0
2.0 13.0 68.5 16.5 100.0
8.4 30.4 34.5 26.7 100.0

CLASS
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4

Count

%

Count

%

Original

Cross-validated a

1 2 3 4
Predicted Group Membership

Total

Cross validation is done only for those cases in the analysis. In cross validation, each case is
classified by the functions derived from all cases other than that case.

a. 

29.3% of original grouped cases correctly classified.b. 

29.3% of cross-validated grouped cases correctly classified.c. 
 

 
Figure 3.14: The classification results of the second training set with 4-classes. 

 

       
 

  
 

Figure 3.15b: The spatial results of 
second training set with 4-classes. 

Figure 3.15a: The second training 
set with 4-classes. 
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The last training set was the least successful of the three. However, in the 4 

class version, although the correct classification percentage dropped, the decrease was 

not as dramatic as in the previous two training sets (Fig. 3.16). The training set was 

33% correctly re-classified. Interestingly, the correct classification percentage of the 

terrace wall and bedrock class, which have the highest correct classification 

percentages, dropped to 36.5 and 31.4 respectively. The spatial results (Figs. 3.17a & 

17b) were generally poor. A section of the terrace wall was somewhat evident in the 

southwestern corner of the grid. 

 
Classification Results b,c

1093 780 556 562 2991
907 996 487 676 3066
139 183 224 234 780

3926 3194 2478 4628 14226
36.5 26.1 18.6 18.8 100.0
29.6 32.5 15.9 22.0 100.0
17.8 23.5 28.7 30.0 100.0
27.6 22.5 17.4 32.5 100.0
1092 780 557 562 2991
907 994 489 676 3066
141 183 211 245 780

3926 3194 2485 4621 14226
36.5 26.1 18.6 18.8 100.0
29.6 32.4 15.9 22.0 100.0
18.1 23.5 27.1 31.4 100.0
27.6 22.5 17.5 32.5 100.0

CLASS
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4

Count

%

Count

%

Original

Cross-validated a

1 2 3 4
Predicted Group Membership

Total

Cross validation is done only for those cases in the analysis. In cross validation, each case is
classified by the functions derived from all cases other than that case.

a. 

33.0% of original grouped cases correctly classified.b. 

32.8% of cross-validated grouped cases correctly classified.c.  
 

             
 

            
Figure 3.17a: The third training set 

with 4-classes. 
Figure 3.17b: The spatial results of third 

training set with 4-classes. 

Figure 3.16: The classification 
results of the third training set 

with 4 classes. 
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Adding the fourth class decreased the correct classification percentage in all 

three training sets but it provided more reasonable results. Therefore, the 

blank/unclassified class was also added to the final analysis, which is the application 

of the DFA to the whole site, as the fourth class. 

As the last step, the training sets were merged, and DFA was applied to the all 

the training sets at once. The correct classification percentage was 32.7 (Fig. 3.18). 

Here again the terrace wall and bedrock classes have the highest re-classification 

success. The two problematic classes, the structure wall class and the 

blank/unclassified class, again have the lowest correct classification percentage. The 

results of the combined file were not interpolated. Their classification coefficients 

will be applied to the whole data set. 

 
Classification Resultsb,c

6925 2431 3892 2886 16134
4303 3495 4525 3876 16199
1945 1311 4563 2096 9915

27180 24355 38181 41932 131648
42.9 15.1 24.1 17.9 100.0
26.6 21.6 27.9 23.9 100.0
19.6 13.2 46.0 21.1 100.0
20.6 18.5 29.0 31.9 100.0

6925 2431 3892 2886 16134
4303 3490 4525 3881 16199
1954 1311 4554 2096 9915

27182 24358 38181 41927 131648
42.9 15.1 24.1 17.9 100.0
26.6 21.5 27.9 24.0 100.0
19.7 13.2 45.9 21.1 100.0
20.6 18.5 29.0 31.8 100.0

CLASS
1
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3
4
1
2
3
4
1
2
3
4
1
2
3
4

Count

%

Count

%

Original

Cross-validated a

1 2 3 4
Predicted Group Membership

Total

Cross validation is done only for those cases in the analysis. In cross validation, each case is
classified by the functions derived from all cases other than that case.

a. 

32.7% of original grouped cases correctly classified.b. 

32.7% of cross-validated grouped cases correctly classified.c. 
 

 
Figure 3.18: The classification results of the combined training set with 4-classes. 
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It proved to be impossible to export two Quickbird images of the entire site as 

ASCII text files and apply the DFA in SPSS because of the immensity of the data set. 

Therefore, in order to classify the whole data set, the classification function 

coefficients were derived from SPSS (Fig. 3.19).  

 
Classification Function Coefficients

7.654 7.639 7.599 7.634
-.877 -.888 -.911 -.911

-2.006 -1.998 -1.955 -1.977
.468 .475 .461 .475

4.16E-03 2.73E-03 6.39E-03 3.62E-03
-659.880 -656.979 -644.720 -653.916

B1
B2
B3
B4
PAN
(Constant)

1 2 3 4
CLASS

Fisher's linear discriminant functions
 

 
 
 

In this way, the DFA results could be applied to the entire site data using the 

following computations (Code 1): 

 

 
 

Code 3.1: The computation of classification coefficients. 
 

 
COMPUTE Class1 = b1 * 7.65412218149666+ b2 * -0.877083178396861+ b3 
* -2.00573924880917 + b4 * 0.467563390699394+ pan * 
0.00415640350236378 + -659.880230994615. 
COMPUTE Class2 = b1 * 7.63863078173964 + b2 * -0.888479867168988 + 
b3 * -1.99776125044739 + b4 * 0.474748017876063 + pan * 
0.00272595082423171 + -656.978913026065. 
COMPUTE Class3 = b1 * 7.59904829202198 + b2 * -0.91145953891317 + 
b3 * -1.9546878902098 + b4 * 0.460929440432299 + pan * 
0.00638727420028636 + -644.719708414389. 
COMPUTE Class4 = b1 * 7.63357878811704 + b2 * -0.910546986690139 + 
b3 * -1.97732745566948 + b4 * 0.475359952064994 + pan * 
0.00361803477155015 + -653.915968075012. 
IF (Class1 > MAX ( Class2, Class3, Class4 ) ) CLASS = 1. 
IF (Class2 > MAX ( Class1, Class3, Class4 ) ) CLASS = 2. 
IF (Class3 > MAX ( Class1, Class2, Class4 ) ) CLASS = 3. 
IF (Class4 > MAX ( Class1, Class2, Class3 ) ) CLASS = 4. 

Figure 3.19: The classification 
function coefficients of the 

combined training set with 4- 
classes. 
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The first four equations work on a pixel by pixel base. They compute 4 

different values for each pixel using the classification function coefficients. The 

greatest value for each pixel determines the class assignment for that pixel. For 

example, if the value which was computed using the Class 1 equation is greater than 

the other three equations, the pixel will be placed in Class1. After the multi-spectral 

and panchromatic bands were combined in a single data set, a model was created in 

Erdas Imagine Spatial Modeler (Fig. 3.20).  

 

 
 

Figure 3.20: The 4-group classifier created in Erdas Imagine Spatial Modeler. 
 

In this model, first the equations are applied to every pixel value one by one. 

Then, four temporary raster files are created for each class which are evaluated using 

a conditional statement which resembles the IF statement discussed above. The 

classified image was the final output of the analysis (Fig. 3.21).  
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Figure 3.21: The final classified image. 
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The results were somewhat repetitive. The DFA was successful in identifying the big 

terrace walls both at the northern and southern part of the site, and this class was the 

second (Fig. 3.22) largest class in the data set. The structure wall class (2), on the 

other hand, showed little spatial patterning. Most of the structure walls that are visible 

in the Quickbird data set are re-classified as terrace wall instead of structure wall. 

The bedrock class (3) served as a background for the classified image, especially in 

areas where nothing is visible on the ground. This is especially evident the area 

between the two tributaries of the stream at the southern end of the site. The 

unclassified class (4) is the smallest class in size. Although its expected function was 

to create the background for the data set, this task was mostly taken up by the bedrock 

class. 

 

 
 

Figure 3.22: The distribution of the classes among the final output. 
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Directional Filters  

Previous studies (Aydin et. al. 2002) have demonstrated that there is a certain 

relationship between the topology and the settlement plan. Therefore, in an attempt to 

explore the relationship between slope and wall orientation, an aspect map was used 

to guide the application of directional edge detection filters.  

Of course, in order to do that, a detailed elevation data that covers the whole 

site is needed. Fortunately, GPS survey covering whole site has been conducted 

providing elevation data in ASCII file format. First, the data set was gridded in Surfer 

with the natural neighbor algorithm. Then it was re-projected to the site grid in Erdas 

Imagine. For re-projection, the 32 GCPs, which were discussed in the previous 

chapter, were used with a second-order polynomial. The RMS error was less then one 

pixel. An aspect map (Fig. 3.23) was created in ArcGIS. The grid cell size of the 

aspect map was 20x20 meters as the gradiometer grid size. Eight directions were 

designated in the aspect map: north (0-22.5, 337.5-360), northeast (22.5-67.5), east 

(67.5-112.5), southeast (112.5-157.5), south (157.5-202.5), southwest (202.5-247.5), 

west (247.5-292.5), northwest (292.5-337.5). The aspect map is a grid file recoded so 

that each direction can have only one value from 1 to 8. The recoded map is 

vectorized in Erdas Imagine so that they can be used as AOIs while applying the 

directional edge detection filters. After the vectorization, the number of the directions 

was decreased by merging the opposite directions into one AOI file. As a result of 

that, only four AOI files were used for filtering process: north-south, east-west,  
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Figure 3.23: The aspect map of the site created from the GPS data. 
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northeast-southwest and northwest-southeast. The first principal component of the 

layer-stacked Quickbird images was used in the filtering process. A principal 

component analysis was applied before running the filters in order to eliminate the 

redundancy in the data set. Four different types of edge detection filters were used: 

vertical for north-south direction, horizontal for east-west direction, right diagonal for 

northeast-southwest and left diagonal for northwest-southeast. The AOI files were 

used to select the appropriate filter for each of the aspect classes. The results were 

disappointing (Fig. 3.24). The filters could not even detect some of the most visible 

walls on the image. Moreover, a problem occurred during the filtering process: the 

polygon edges of the AOIs and the edges of the blank areas were major edges to be 

detected.  
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Figure 3.24: The final image of filtering process.  
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CHAPTER IV 

DISCUSSIONS AND CONCLUSIONS 

The major conclusion of this study is that although satellite technology has 

reached a level of resolution that makes it likely to be useful in archaeological 

research, there are still many obstacles to be overcome. Like the other remote sensing 

techniques (e.g, the geophysical techniques), satellite imagery can be employed in 

order to reveal the archaeological landscape. As mentioned in the first chapter, 

satellite imagery has been successfully utilized for urban landscape studies. This 

study is an attempt to understand and evaluate the possible applications of satellite 

imagery for archaeological landscapes.  

The interpretation of the remotely sensed images, ground truthing, is one of 

the most difficult problems of remote sensing applications in archaeology. This study 

also aimed to replace qualitative interpretation based on the analyst’s decisions, with 

a quantitative one, because like in other applications of the remote sensing 

techniques, we (archaeologists) need a more objective method for the interpretation of 

the remotely sensed images.  

During both the pre-processing and analysis stages of this study several 

problems were encountered, such as the re-projection problem in the pre-processing 

stage or the ‘zero’ problem at the analysis stage. Some of those problems were 

solved; some of them were not.  
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The problems and their possible solutions: 

1. The re-projection problem: This study required a very precise re-projection for the 

integration of the data sets and that was very nearly achieved, thanks to crosses 

marked on the ground and evident in the imagery. However, the re-projection 

process could have been easier if the Quickbird images were not re-projected at 

all, because the image was first warped to the UTM projection by the image 

vendor then to the site grid by the user. As a result, the amount of the distortion 

that is caused by re-projection processes was doubled.  

2. The ‘zero’ problem: The unclassified class was one of the most complex problems 

that was encountered during this study. Its solution was only temporary. Image 

segmentation could be a better solution to that problem. Image segmentation 

method aims to divide the image into homogeneous areas, where all the pixels 

belong to only one class (Lobo 1997). The same method could have been applied 

to this study by segmenting the image into a granite class, which was the main 

construction material, and a non-granite class. In order to achieve that, the image 

could have classified as granite and non-granite. Then the pure granite pixels 

could have re-classified into different classes. That could have facilitated the DFA 

analysis, and avoided adding the unclassified class in the analysis. 

3. The limitation of data sets: Unfortunately, the only data set that was available for 

the analysis was the Quickbird images. This limited the analysis in many ways. 

The principal component analysis revealed the fact that the Quickbird data set is 
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highly correlated. Johnson and Haley’s (2003) study was much more successful 

because of the availability of different data sets, that enabled the DFA to produce 

better results.  

One of the major problems in this study was the poor classification. The best 

correct classification rate, which was 70.1, was achieved with 2-class training sets. 

Moreover, it was impossible to visualize any patterning for the structure walls in 

general. Thus, the DFA cannot really distinguish the structure walls class from the 

terrace wall class or from the bedrock class. Because DFA is a spectral classifier, it 

based on pixel value. In this case, there was not much spectral difference between the 

all three classes because they were all made of the same material: granite. Thus their 

spectral signatures were quite similar.  

In conclusion, the application of the remote sensing techniques is a growing 

trend in archaeology. However, we still lag behind the mainstream in remote sensing. 

Archaeological data are generally very complex because of the multi-dimensional 

nature of archaeological record. Moreover, one of the biggest problems of 

archaeological data is integration. Therefore it is our job to explore, apply and 

evaluate these new techniques and technologies, because they can facilitate the 

immense task of drawing conclusions from that multi-dimensional archaeological 

data.  
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